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Three Views of Language

Structuralist View Speech View
Grammars n-gram language models
POS tags PCFG language models
Dependencies Speech recognition
Co-reference resolution | Machine translation
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Where do we find them?

@ Sentence networks

e Summarization (LexRank, TextRank)
@ Word networks
Keyword Extraction (TextRank, ExpandRank)
Authorship Attribution (Antiqueira et al., 2006)
Genre |dentification (Stevanak et al., 2010)
Opinion Classification (Amancio et al., 2011)
Semantic Analysis (Biemann et al., 2012)
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@ Examples of word collocation networks
@ Structural properties

@ Three exploratory analyses
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Word Collocation Networks

The quick brown fox jumped over the lazy dog.
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Structural Properties

Network Property Notation
Number of vertices V]
Number of edges |E|
Shrinkage exponent (Leskovec et al., 2007) log|y/ | E]
Global clustering coefficient C

Small-worldliness (Walsh, 1999; Matsuo et al., 2001)  u = (C/L)/(Crand/Lrand)

Diameter (directed) ddirected
Diameter (undirected) dyndirected
Power-law exponent of degree distribution «
Power-law exponent of in-degree distribution Qjp
Power-law exponent of out-degree distribution Qout
p-value for « Pa
p-value for a;, Pajy
p-value for aour Paout
Number of connected components #CC
Number of strongly connected components #SCC

Size of the largest connected component
Size of the largest strongly connected component -
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Exploratory Analysis

@ How do network properties vary across different genres of
text?

@ How do network properties vary across different network
types?

© How do the properties evolve as a word network grows in size?
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Datasets

Blog Authorship Corpus (Schler et al., 2006)
- 19,320 blogs, 136.8 million words
Reuters-21578, Distribution 1.0
- 19,043 news articles, 2.6 million words
@ NIPS Conference Papers Vols 0-12
- 1,740 papers, 4.8 million words
o E-books from Project Gutenberg
- 3,036 books, 210.9 million words
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Exploratory Analysis 1: Across Genres
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Exploratory Analysis 2: Across Network Types
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Observations

@ There are statistically significant variations between genres
for distributions of network properties.

@ There are also statistically significant variations between
network types for distributions of network properties.

@ As word networks grow in size, key structural properties
evolve in phases, via spikes and drops.

@ Networks densify as they grow, evidenced by the shrinkage in
diameter.

@ Networks from news articles have low small-worldliness (1)
and high a.
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Code and Data

@ https://drive.google.com/file/d/
0B2Mzhc7popBgODFKZVVnQTFMQKE/edit?usp=sharing
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Looking Ahead ...

e Visualization of collocation networks
- IBM Many Eyes project
(http://www.manyeyes.com/)
@ Application of collocation networks
- Authorship Attribution (Lahiri and Mihalcea, 2013)
- Keyword Extraction (Lahiri et al., 2014)
- Gender and Genre Classification
- Stylometry
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http://www.manyeyes.com/

Questions?
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